By Harald Nahrstedt

Show description

Read Online or Download Algorithmen fur Ingenieure - realisiert mit Visual Basic PDF

Best applied mathematicsematics books

Forecasting Demand and Supply of Doctoral Scientists and Engineers (Compass Series)

This record is the precis of a workshop performed by way of the nationwide study Council which will study from either forecast makers and forecast clients approximately advancements that may be made in realizing the markets for doctoral scientists and engineers. The workshop commissioned papers tested: the heritage and issues of versions of call for and provide for scientists and engineers; targets and techniques to forecasting types; margins of adjustment which were ignored in versions, particularly substitution and caliber; the presentation of uncertainty; and even if those forecasts of provide and insist are priceless, given all their shortcomings.

Finding the Groove: Composing a Jazz-Shaped Faith

'A jazz-shaped religion . .. balances freedom with barriers, the person with the gang, and traditions with the pursuit of what can be. i've got chanced on in jazz a manner of pondering, residing, communicating---a approach of being . .. a groove. ' you do not have to be a jazz musician, or perhaps a jazz gourmand, for this e-book to talk to you.

Additional info for Algorithmen fur Ingenieure - realisiert mit Visual Basic

Sample text

Value Ranc_ e ( " A 3 " ) . Value R a n c 9e ( " C 2 " ) . V a l u e R a n c :e("C3") . V a l u e R a n c re ("El") . V a l u e R a n c re("Fl") . V a l u e R a n c re("Gl") . V a l u e R a n t re("B6") . Select End Sub Private Sub Minimum_Testdaten() Cells(l, 2) = 50 Cells(2, 2) = i0 Cells(3, 2) = i 0 0 Cells(4, 2) = 0 . 0 1 End Sub Private Function Ob(V, Dim r As Double Dim pi As Double pi = 4 * Atn(1) r = d / 2 Ob = 2 * pi * r End Function d) * r + 2 'Oberflache in 'Konstante pi 'Radius in cm * V / r Private Function Obl(V, Dim r As Double Dim pi As Double d) pi = 4 * Atn(1) r = d / 2 Obl = 4 * pi * r End Function 'Konstante pi 'Radius in cm * V / (r * r) - 2 Private Function Ob2(V, Dim r As Double Dim pi As Double pi = 4 * Atn(1) r = d / 2 Ob2 = 4 * pi + 4 * V End Function d) / cm^3 'i.

2 Kubische Gleichungen ............................................................................................................................................................................................................... Activate . Column Case 3 Cells(3, Case 7 Call Target 3 Then (7, / 3) / 3) / 3 2) = x2 Cells(8, 2) = x3 C e l l s (7, Cells(8, Cells(7 4) 4) 5) = = = "" "" "" Cells(8, 5) = "" ElseIf D = 0 Then y l = 2 * ( - q / 2) ^ (I / 3) J y 2 = ( - q / 2) ^ (I / 3) L ...........................................................................................................................................................................................................................

2. Ableitung Ableitung der Oberfl~che der Oberflache 'Konstante pi 'Radius in cm (r * r * r) Private Sub Minimum_Auswertung () D i m d, dl, d2, V, e A s D o u b l e Dim i As Integer 'E i n g a b e w e r t e lesen V = Cells(l, 2) dl = C e l l s ( 2 , 2) d2 = C e l l s ( 3 , 2) i e = C e l l s (4 2) ! ' i 'S t a r t ~ b e r p r f i f u n g , / / 10 10 'Volumen in cm^3 'Startwert 1 i n cm 'Startwert 2 i n cm 'Abschaltkriterium |...........................................................................................................................................................................................................................

Download PDF sample

Rated 5.00 of 5 – based on 14 votes